Section 5 OPERATOR & FIELD MAINTENANCE ### 5.1 GENERAL Series 2000 Digital Multimeters use solid state components and integrated circuits (except for display tubes), and are designed for reliable long-life operation. Except for calibration verification, no operator maintenance should be required, and there should be no normal requirement for opening the DMM case. Should any malfunction require corrective action within the warranty period, arrangements should be made to obtain factory assistance. ### CAUTION Data Precision provides this Maintenance Information primarily for users of Series 2000 Digital Multimeters in need of repair after the expiration of the Warranty period. The information is intended for users who are qualified and competent to effect any needed repairs. The equipment may be returned for repairs at a nominal fee if the user should elect to have the factory make repairs. Should the qualified user attempt to troubleshoot and repair the DMM, he will find that Series 2000 DMM contains a number of features especially designed for simplified unambiguous troubleshooting and fault indication. Among these are: a. Full and complete design and parts data in this Instruction Manual; b. A positive troubleshooting procedure intended for effective use by competent technical personnel in isolating and correcting all but the most subtle and intricate problem sources; c. Mechanical parts layout and identification for logical and easy location. # 5.2 PARTS GROUPING AND THE TEST STAND-OFF GRID The printed circuit board is etched to show the grouping into major functions of the components (Figure 5-1). These correspond, generally, to the schematics in Section 6. The separate groups are individually named, the designations appearing along the edge of the board. When the Guard is removed, the floating Analog power supply and the analog portion of the A/D Converter and Signal Conditioner are revealed. The two amplifiers of the A/D Converter and the CLAMP/UNCLAMP switching module are separate modular components. They are mounted on the base PC board as integral component assemblies. Verifying signal values throughout the circuit is considerably simplified mechanically by strategically positioned stand-offs, connected to circuit components for easy access to points where performance may be monitored. Each installed stand-off is identified by an E-number on the schematics, and etched on the PC board. Access to every major critical portion of the circuit has been assured. ### 5.3 THE TROUBLESHOOTING FLOW CHART Figure 5-2 is a coded plan for troubleshooting Series 2000 DMM. The chart presents the logical sequence for performing tests so that an interpretation of test results will isolate the circuit components that are functioning properly. The complete sequence then leads the technician to the only components that may be the source of trouble. Signal tracing the isolated faulty circuit group and reference to the schematic for correct values normally will uncover the faulty component. A standard graphic code has been used in the flow chart: 5 - 2 MAINTENANCE The troubleshooting and maintenance procedures are intended for experienced technicians. Use of the flow chart directs the technician to the appropriate circuitry and reference schematic for subsequent detailed component fault isolation, replacement and repair. ### 5.4 USING THE TROUBLESHOOTING FLOW CHART As shown in Figure 5-2, one starts by activating the POWER push button and checking to see if the POWER lamp is lit. If not, the chart directs the maintenance man to perform Test No. 1 as as defined in the integral Table of Tests. Test No. 1 calls for the measurement of a DC voltage between stand-offs E18 and E19, and checking for a nominal voltage of +140 volts. If the voltage is present, then, according to the chart, it is concluded that neon display lamp DS13 and its circuitry are in need of further isolation. If the voltage check of Test No. 1 indicates an incorrect value of the DC voltage, then the chart directs the maintenance technician to use Reference Dwg. 35-1002 and to measure the other output voltages in accordance with Tests 2.1 and 2.2. The Table of Tests also indicates the driven circuits for each of the supply voltages. These may be the cause of incorrect voltage measurements when checking power supply levels and should be checked for excessive current drains by examining driven components and their nearby components for signs of elevated temperatures. The reference drawing includes the pin identification of the components driven by each supply. Continue through the flow chart as directed, and the successive steps will confirm the proper operation of incremental portions of the DMM as they contribute to the performance as a whole. An incorrect reading in any step identifies the circuit components as a group within which the malfunction most probably originates. The testing sequence represented by Figure 5-2 is concluded with a calibration to complete the maintenance process. Complete DMM function will have been verified by this process, but only those coded outputs actually tested are verified. Any pattern of missing digits may not be detected in these tests, and such a symptom is indicative of a malfunctioning counter, latch, or decoder IC. | TEST
NO. | SET-UP | PARAMETER | TEST POINTS | NOMINAL
VALUE | LIMITS | IF N.G.,
CORRECTIVE
ACTION
REFERENCE | IF O.K.,
PROPERLY
FUNCTIONING
SUBSYSTEM | |-------------|--------------------------------------|----------------------|---|---------------------------------------|----------------------|---|--| | 1 | Activate
Power ON | DC Volts | E18: E19 | +140V | +125V
to
+155V | Power Supply
Drawing
35-1002 | Neon & Nixie
Supply | | 2.1 | | DC Volts | E17: E19 | +20V | 18 to 22 | Power Supply
Drawing
35-1002 | Relay Supply | | 2.2 | | DC Volts | E16: E19 | +5V | 4.5 to
5.5 | Power Supply
Drawing
35-1002 | Digital Logic
Supply | | 3 | Open Vx
Short Z1A
pin 1 to GND | | | | | | φ1, φ2, φ3;
No EOC,
120000 Count | | 3.1 | | Frequency
Count | Z2A pin 1 | 1 MHz | ±1 kHz | Clock Circuit
Drawing
35-1005 | Clock | | 3.2 | | Waveform
Analysis | Rear Conn
Pin J | Amp >+2.5V
Rep Rate
∼3 pps | -0, +5
2.5-3.3 | Trigger Gen
Drawing
35-1005 | Trigger
Generator | | 3.3 | | Frequency | Z4 through
Z8 and Z2
Pin 14 on each | 1 MHz to
10 Hz (by 10)
and 5 Hz | ± 0.1% | Decade
Counter
Drawing
35-1005 | Decade Counter
Chain and
Binary Counter | | 3.4 | | Logic Levels | Rear Conn
DATA OUT
Tabs | BCD for
120000 | | Latches Z9—
Z13 Drawing
35-1005 | Latch | | 3.5 | | Display | Front Panel | 120000,
Blinking "1" | | Display
Drawing
35-1005 | Display | | | | | | | | | The second of th | |-------------|---|-------------------------------------|--|--|-----------------------------|---|--| | TEST
NO. | SET-UP | PARAMETER | TEST POINTS | NOMINAL
VALUE | LIMITS | IF N.G.,
CORRECTIVE
ACTION
REFERENCE | IF G.K.,
PROPERLY
FUNCTIONING
SUBSYSTEM | | 3.6 | DC V Mode | Sign | Front Panel
Display | "+" | | Sign Circuit
L5, Z14, etc.
Drawing
35-1006 | Sign Circuit | | 3.7 | AC V Mode | Sign | Display | No Sign | | Sign Circuit
L5, Z14, etc.
Drawing
35-1006 | Sign Circuit | | 3.8 | kΩ Mode | Sign | Display | No Sign | | Sign Circuit
L5, Z14, êtê.
Drawing
35-1006 | Sign Circuit | | 3.9 | No Range
Activate | Impedance | Rear Panel
Range Tabs
6, 11, T, B, H | Open
Ckt | | Auto Řánge
Drawing
35-1003 | x 10 ⁴ Řáříge | | 3.10 | All Modes
a) x 1
b) x 10
c) x 100
d) x 1000
e) x 10000 | Display,
Relays | Display,
Range
Relays | Correct
Decimal Point
Relay per
Table | | Relay Tablê
Drawing
35-1003 | Decimal Point
Display Relay
Operation | | 3.11 | Auto Range
a) DC V
b) kΩ
c) Jumper Z2
Z2 pin 8
to Z3 pin 8 | Decimal Point Decimal Point Value | Display | Decimal Point
a) x 1000
b) x 10000
c) "0" x 1 | | Auto Ranging Drawing 35-1003 | Auto Range | | 4.1 | | DC Vots | Z33 pin 8 | +15V | ±1V
Ripple
1mV
RMS | Power Supply
Drawing
35-1002 | Anālog Power
Supply | | TEST
NO. | SET-UP | PARAMETER | TEST POINTS | NOMINAL
VALUE | LIMITS | IF N.G.,
CORRECTIVE
ACTION
REFERENCE | IF O.K.,
PROPERLY
FUNCTIONIN
SUBSYSTEM | |-------------|--|-----------|----------------------|---------------------------------------|--|---|---| | 4.2 | | DC Volts | Z33 pin 4 | -15V | ± 1V
Ripple
1mV
RMS | Power Supply
Drawing
35-1002 | Analog Power
Supply | | 4.3 | | DC Volts | Z31A pin 7 | -5V | ± 1V
Noise
25 μV | Power Supply
Drawing
35-1002 | Analog Power
Supply | | 5 | Short E62
to E71
Jumper Z32A
pin 6 to pin 7 | | | | | | Zero Input to
A/D
No EOC at End
of Phase 3 | | 5.1 | | Waveform | Z31A pin 5 | Positive Pulses
100 msec | | A/D Conv.
Drawing
35-1006 | Trigger & 10 ⁵ Carry Start and End Phase 2 | | 5.2 | | DC Volts | Amp A1 pin 2 | 200 mV | +0, - | A/D Conv.
Drawing
35-1006 | A1 Operation
OFF SET | | 5.3 | | DC Volts | Junction R96,
R99 | 1V | ± 1V | A/D Conv.
Drawing
35-1006 | A2 and Clamp
Circuits | | 6 | Remove
Short
Connect
Varying Vx
DCV ±11V | | | | The second secon | | Supply Varying
Input Voltage
Values | | 6.1 | DCV Mode
Range x 10 | DC Volts | E35: E6 | Track Input
Values
(Scope Ind.) | | Signal Cond.
Drawing
35-1004 | DCV Signal
Conditioning | | TEST
NO. | SET-UP | PARAMETER | TEST POINTS | NOMINAL
VALUE | LIMITS | IF N.G.,
CORRECTIVE
ACTION
REFERENCE | IF O.K.,
PROPERLY
FUNCTIONING
SUBSYSTEM | |-------------|--|---------------------------|-------------------------------|---------------------------------|--------|---|---| | 6.2 | +10V to Vx
Sync. Scope
to Z31 pin 5 | Waveform | Amp A1 pin 2 | +8 100 ms | | A/D Conv.
Drawing
35-1006 | ISO-POLAR
Switch Module,
Amps A1, EOC
Integrating A2 | | 6.3 | Reverse Input
Vx Polarity | Waveform | Amp A1 pin 2 | Reverse Polarity | | A/D Conv.
Drawing
35-1006 | ISO-POLAR
Switch Module,
Amps A1, EOC
Integrating A2 | | 7 | Connect for Resistance 2-Wire Connect Resistances in each Range $k\Omega$ Mode . | Resistance
Measurement | Display | Track Input
Value
Changes | | Signal Cond.
Drawing
35-1004 | Ohms Converter
Signal
Conditioning | | 3 | Apply +10V
to Both Vx
and Rx
RATIO Mode
10V Range | Display
Count | Display | 10.0000 | ±.1000 | Ratiohmic Ckt
Drawing
35-1004 | Ratiohmic
Function | |).1 | ACV Mode
Range x 1
Apply 11V,
200 Hz | Waveform | Z26 pin 6
CR25,
Cathode | 1V RMS
sin Wave
Half-Wave | | Signal Cond.
Drawing
35-1004 | ACV Signal
Conditioning | | .2 | x 10 Range
Apply
10 VRMS
200 Hz | Display Count | Display | Approx. 10 | | Signal Cond.
Drawing
35-1004 | ACV Signal
Conditioning | | .3 | x 100 Range | Display Count | Display | Approx. 100 | | Signal Cond.
Drawing
35-1004 | ACV Signal
Conditioning |