TrenchMOS ${ }^{\text {TM }}$ transistor

GENERAL DESCRIPTION

N -channel enhancement mode logic level field-effect power transistor in a plastic envelope suitable for surface mounting. The device features very low on-state resistance and has integral zener diodes giving ESD protection. It is intended for use in automotive and general purpose switching applications.

PINNING - SOT223

PIN	DESCRIPTION
1	gate
2	drain
3	source
4	drain (tab)

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	UNIT
$V_{\text {DS }}$	Drain-source voltage	55	V
I_{D}	Drain current	5.5	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation	1.8	W
T_{j}	Junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Drain-source on-state resistance $\quad \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	150	$\mathrm{m} \Omega$

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {DS }}$	Drain-source voltage			55	V
$\mathrm{V}_{\text {DGR }}$	Drain-gate voltage	$\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$		55	V
$\pm \mathrm{V}_{\text {GS }}$	Gate-source voltage			10	V
I_{D}	Drain current (DC)	$\mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C}$	-	5.5	A
$\mathrm{I}_{\text {D }}$	Drain current (DC)	On PCB in Fig. 19 $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-	2.6	A
I_{D}	Drain current (DC)	On PCB in Fig. 19	-	1.6	A
I_{PM}	Drain current (pulse peak value)	$\mathrm{T}_{\text {sp }}^{\text {amb }}=25^{\circ}{ }^{\circ} \mathrm{C}$	-	30	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation	$\mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C}$	-	8.3	W
$\mathrm{P}_{\text {tot }}$	Total power dissipation	On PCB in Fig. 19 $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	-	1.8	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage \& operating temperature	$\mathrm{a}_{\text {amb }}=25{ }^{\text {c }}$	- 55	150	c

ESD LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{C}	Electrostatic discharge capacitor voltage	Human body model $(100 \mathrm{pF}, 1.5 \mathrm{k} \Omega)$	-	2	kV

TrenchMOS ${ }^{\text {TM }}$ transistor

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
$R_{\text {th } j \text {-sp }}$	From junction to solder point $R_{\text {th } j \text {-amb }}$	From junction to ambient	Mounted on any PCB	12	15
Mounted on PCB of Fig. 18	-	70	K/W		

STATIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {(BR) }}$ (${ }^{\text {ds }}$	Drain-source breakdown	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{~mA}$	55		-	V
$\mathrm{V}_{\text {GS (TO) }}$	Gate threshold voltage	$\mathrm{V}_{\text {DS }}=\mathrm{V}_{G S} ; \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \quad \mathrm{~T}_{\mathrm{j}}=-55^{\circ} \mathrm{C}$	50 10	15	2.0	V
		$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} ; \mathrm{l}_{\mathrm{D}}=1 \mathrm{~mA}$	0.6	1.5	2.0	V
		$\mathrm{V}_{\text {DS }}=55 \mathrm{~V} \cdot \mathrm{~V}_{\text {GS }}=0 \mathrm{~V} \cdot \quad \mathrm{~T}_{\mathrm{j}}=-55^{\circ} \mathrm{C}$	-	0.05	2.3	\checkmark
$\mathrm{I}_{\text {DSs }}$	Zero gate voltage drain current	$\mathrm{V}_{\mathrm{DS}}=55 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$;	-	0.05	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {GSS }}$	Gate source leakage current	$\mathrm{V}_{\mathrm{GS}}= \pm 5 \mathrm{~V}$	-	0.02	100 1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	-	-	5	$\mu \mathrm{A}$
$\begin{array}{\|l} \pm \mathrm{V}_{\text {(BR)GSS }} \\ \mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \end{array}$	Gate source breakdown voltage	$\mathrm{V}_{\text {GS }}= \pm 1 \mathrm{~mA}$	10	120	150	V
	Drain-source on-state resistance	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	-	120	150 277	$\mathrm{m} \Omega$ $\mathrm{m} \Omega$

DYNAMIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
g_{is}	Forward transconductance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	3	5	-	S
$\mathrm{C}_{\text {iss }}$	Input capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	250	330	pF
$\mathrm{C}_{\text {ons }}$	Output capacitance		-	65	80	pF
$\mathrm{C}_{\text {Iss }}$	Feedback capacitance		-	35	50	pF
$\mathrm{t}_{\text {don }}$	Turn-on delay time	$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A} ;$	-	11	17	ns
t_{f}	Turn-on rise time	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=10 \Omega ;$	-	38	60	ns
$\mathrm{t}_{\text {doff }}$	Turn-off delay time	Turn-off fall time	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	25	38
t_{f}	ns					

REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS

$T_{j}=-55$ to $175^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I_{DR}	Continuous reverse drain	$\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$	-	-	5.5	A
$\mathrm{I}_{\mathrm{DRM}}$	current	Pulsed reverse drain current	$\mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C}$	-	-	30
$\mathrm{~V}_{\mathrm{SD}}$	Diode forward voltage	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	A			
t_{r}	Reverse recovery time	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} ;-\mathrm{dl} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} ;$	-	43	-	ns
Q_{rr}	Reverse recovery charge	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V} ; \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$	-	0.85	1.1	V

TrenchMOSTM transistor

AVALANCHE LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
W $_{\text {DSS }}$	Drain-source non-repetitive unclamped inductive turn-off energy	$\mathrm{I}_{\mathrm{D}}=1.9 \mathrm{~A} ; \mathrm{V}_{\mathrm{DD}} \leq 25 \mathrm{~V} ;$ $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{GS}}=50 \Omega ; \mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$	-	-	15	mJ

Fig.1. Normalised power dissipation. $P D \%=100 \cdot P_{D} / P_{D 25{ }^{\circ} \mathrm{C}}=f\left(T_{\text {sp }}\right)$

Fig.2. Normalised continuous drain current. $I D \%=100 \cdot I_{D} / I_{D 25{ }^{\circ} \mathrm{C}}=f\left(T_{s p}\right)$; conditions: $V_{G S} \geq 5 \mathrm{~V}$

Fig.3. Safe operating area. $T_{s p}=25^{\circ} \mathrm{C}$ $I_{D} \& I_{D M}=f\left(V_{D S}\right) ; I_{D M}$ single pulse; parameter t_{p}

Fig.4. Transient thermal impedance.
$Z_{t h j-s p}=f(t) ;$ parameter $D=t_{p} / T$

TrenchMOS ${ }^{\text {TM }}$ transistor

Fig.5. Typical output characteristics, $T_{j}=25^{\circ} \mathrm{C}$. $I_{D}=f\left(V_{D S}\right)$; parameter $V_{G S}$

Fig.6. Typical on-state resistance, $T_{j}=25^{\circ} \mathrm{C}$. $R_{D S(O N)}=f\left(I_{D}\right)$; parameter $V_{G S}$

Fig.7. Typical transfer characteristics. $I_{D}=f\left(V_{G S}\right)$; conditions: $V_{D S}=25 \mathrm{~V}$; parameter T_{j}

Fig.8. Typical transconductance, $T_{j}=25{ }^{\circ} \mathrm{C}$. $g_{t s}=f\left(I_{D}\right)$; conditions: $V_{D S}=25 \mathrm{~V}$

Fig.9. Normalised drain-source on-state resistance. $a=R_{D S(O N)} / R_{D S(O N) 25{ }^{\circ} \mathrm{C}}=f\left(T_{j}\right) ; I_{D}=5 \mathrm{~A} ; V_{G S}=5 \mathrm{~V}$

Fig.10. Gate threshold voltage.
$V_{G S(T O)}=f\left(T_{j}\right) ;$ conditions: $I_{D}=1 \mathrm{~mA} ; V_{D S}=V_{G S}$

TrenchMOS ${ }^{\text {TM }}$ transistor

Fig.11. Sub-threshold drain current.
$I_{D}=f\left(V_{G S}\right)$; conditions: $T_{j}=25^{\circ} \mathrm{C} ; V_{D S}=V_{G S}$

Fig.12. Typical capacitances, $C_{i s s}, C_{\text {oss }}, C_{\text {rss }}$. $C=f\left(V_{D S}\right)$; conditions: $V_{G S}=0 \quad V ; f=1 \mathrm{MHz}$

Fig.13. Typical turn-on gate-charge characteristics. $V_{G S}=f\left(Q_{G}\right)$; conditions: $I_{D}=5$ A; parameter $V_{D S}$

Fig.14. Typical reverse diode current.
$I_{F}=f\left(V_{S D S}\right)$; conditions: $V_{G S}=0 \quad \mathrm{~V}$; parameter T_{j}

Fig.15. Normalised avalanche energy rating.

$$
W_{\text {DSs }} \%=f\left(T_{s p}\right) ; \text { conditions: } I_{D}=1.9 \mathrm{~A}
$$

Fig.16. Avalanche energy test circuit.

$$
W_{D S S}=0.5 \cdot L I_{D}^{2} \cdot B V_{D S S} /\left(B V_{D S S}-V_{D D}\right)
$$

TrenchMOS ${ }^{\text {TM }}$ transistor

Fig.17. Switching test circuit.

TrenchMOS ${ }^{\text {TM }}$ transistor

PRINTED CIRCUIT BOARD

Fig.18. PCB for thermal resistance and power rating for SOT223.
PCB: FR4 epoxy glass (1.6 mm thick), copper laminate (35 $\mu \mathrm{m}$ thick).

TrenchMOS ${ }^{\text {TM }}$ transistor

MECHANICAL DATA

Fig. 19. SOT223 surface mounting package.

Notes

1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide.
2. Refer to surface mounting instructions for SOT223 envelope.
3. Epoxy meets UL94 V0 at 1/8".

TrenchMOS ${ }^{\text {TM }}$ transistor Logic level FET

 BUK98150-55
DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	
© Philips Electronics N.V. 1998	
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.	
The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

